SparkLoop
Search…
Anti-Fraud
Detecting referral fraud and making sure your subscribers don't win rewards by cheating is one of our most important responsibilities. And a key reason to choose SparkLoop for your referral program.
SparkLoop comes with a sophisticated, personalisable range of anti-fraud mechanisms to help you detect and prevent cheating in an automated, or mostly automated, way.
This keeps the quality of your list high, without requiring a lot of manual effort from you.

Anti-fraud levels

You can set your preferred level of anti-fraud detection by going to Settings > Anti-fraud.
There are 3 levels of anti-fraud security in SparkLoop: Flexible, Strong and Very Strong.
The majority of referral programs will be best served by the Flexible setting.
Larger newsletters, referral programs offering high-value or expensive rewards, may find the Strong setting necessary.
The Very Strong setting is our highest level of anti-fraud. This setting is so strict that it may result in a non-negligible number of "real" referrals being marked as fraudulent.
So we recommend you only use the Very Strong setting if you have an audience which is extremely prone to cheating, or are using a reward (or giveaway prize) of extremely high value.

How anti-fraud works

When a new referral is tracked our algorithm will assess the fraud level in real-time.
"Obviously" fraudulent referrals will be immediately rejected and marked as rejected referral, regardless of your anti-fraud level.
Fraudulent referrals include people who use email aliases (for example [email protected] refers [email protected]) or disposable domains (temporary, one-time email addresses that don't require the creation of an account and that are often used by bots; eg: mailinator.com).
When a referral is marked as "rejected" it will not count towards the advocate's reward points. And it won't be included in their referral count (or the RH_TOTREF custom field in your ESP).
When a referral is marked as “rejected” SparkLoop will update their RH_ISREF custom field to “REJECTED”. This allows you to segment these subscribers in your ESP and easily remove them or unsubscribe them.

Unverified referrals

Sometimes, it's not immediately obvious if a referral is fraudulent.
If that happens, our anti-fraud algorithms predict the likelihood of a referral being fraudulent based on multiple factors such as the referral's IP address, device, domain and other secret factors (AKA our "secret sauce").
Based on your selected anti-fraud level, SparkLoop may then mark a referral we aren't completely sure about as unverified.
At any time you can see all the referrals SparkLoop couldn't verify as genuine by going to the Unverified tab under the Subscribers page.
There you can easily and quickly reject the referrals you think are fraudulent.

Manual and semi-manual reward approval

The most important concern when it comes to anti-fraud is making sure rewards — especially ones which have a production cost — can't be won by cheating.
To help you avoid giving rewards to cheating subscribers, you can set a custom reward approval level on a reward-by-reward basis.
There are 3 levels:
    Automated The reward will be approved automatically when a subscriber wins it. Ideal for digital/low-monetary rewards (eg: a free ebook, access to a secret newsletter).
    Semi-manual The reward requires manual approval in case of unverified referrals ONLY. When a subscriber wins this reward we will check whether any of their referrals are unverified. If so we will send you an email prompting you to manually approve (or reject) the reward. If the subscriber has only made verified referrals, the reward will be approved automatically.
    Manual The reward always requires manual confirmation. Ideal for expensive/high-monetary-value rewards that are won infrequently.
You can set the approval level of each reward in the "edit reward" modal.

Blocking and whitelisting

Sometimes you know exactly who the bad or good apples are.
For example you might have noticed a subscriber who refers lots of obviously fake referrals — so you want to prevent them from attempting to make more referrals in the future.
To block subscribers who are referring lots of fraudulent referrals go to their profile page > Actions > Block.
Whitelisting is the opposite of blocking: when you whitelist a subscriber SparkLoop will automatically confirm any reward they win even if they have unverified referrals (unless your reward requires manual confirmation).
To whitelist a subscriber go to their profile > Actions > Whitelist.
Use this feature to whitelist your known fans and ambassadors.
NOTE: you can "unblock" and "unwhitelist" subscribers at any time.

Rejecting individual referrals

There might be times when you want to retroactively reject verified referrals. This can happen, for example, when you notice a fraudulent referral has got away from our anti-fraud algorithm.
To manually reject referrals follow these steps:
    Go to the referrer's profile page and scroll down to the Referrals section
    Select all the referrals you want to reject by ticking the checkbox next to their email address
    Click on the Reject Referrals button int the top right corner
    In the modal window click on Reject Referrals again to confirm the rejection.
When you reject referrals, SparkLoop will update the RH_ISREF custom field of the rejected referrals to “REJECTED” in your email platform. This allows you to segment these subscribers and easily remove them or unsubscribe them.
Please note that rejecting these referrals will NOT remove rewards that have been already won.
Last modified 1mo ago